Derivation of the TAP Equation
Here I derive the Thouless-Anderson-Palmer (TAP) equation directly from calculating the free energy (or the log of partition function).
The free energy of the SK model $f_{\mathrm{TAP}}$ comprises two parts: the energy term and the entropy term.
The energy term:
\[E(\beta,\mathbf{m})=\left\langle -\frac{1}{2} \sum_{i \neq j}J_{ij}\sigma_i\sigma_j-\; \sum_{i}h_i\sigma_i\right\rangle = -\frac{1}{2} \sum_{i \neq j}J_{ij} J_{ij}\langle\sigma_i\sigma_j\rangle - \sum_{i} h_i m_i, \quad \text{Eq. 1}\]Here $m_i=\langle\sigma_i\rangle$, and $\langle *\rangle$ denotes the average over the Boltzmann distribution of ${\sigma_i}$.
We will calculate $\langle\sigma_i\sigma_j\rangle$ explicitly as a function of $\beta$ and $\mathbf{m}$:
The state of $\sigma_j$ can affect the state of $\sigma_i$:
\[\delta_j \sigma_i \;\triangleq\; \langle\sigma_i\rangle^{(\sigma_j=-1)}-\langle\sigma_i\rangle^{(\sigma_j=+1)}.\]We can write $\langle\sigma_i\rangle^{(\sigma_j=-1)}$ and $\langle\sigma_i\rangle^{(\sigma_j=+1)}$ explicitly:
\[\langle\sigma_i\rangle^{(\sigma_j=+1)} = \delta_j\sigma_i \cdot P(\sigma_j=-1) + m_i, \quad \text{Eq. 2}\] \[\langle\sigma_i\rangle^{(\sigma_j=-1)} = -\delta_j\sigma_i \cdot P(\sigma_j=+1) + m_i, \quad \text{Eq. 3}\]Where $P(\sigma_j=-1)=\frac{1-m_j}{2}$ and $P(\sigma_j=+1)=\frac{1+m_j}{2}$, are the marginal probability of $\sigma_j=-1$ or $+1$, Then we have:
\[\langle\sigma_i\sigma_j\rangle-\langle\sigma_i\rangle\langle\sigma_j\rangle \approx 1\cdot \langle\sigma_i\rangle^{(\sigma_j=+1)}\cdot P(\sigma_j=+1) +(-1)\cdot \langle\sigma_i\rangle^{(\sigma_j=-1)}\cdot P(\sigma_j=-1)-m_i m_j\] \[=2\cdot \delta_j\sigma_i\cdot P(\sigma_j=-1)P(\sigma_j=+1) =\frac{1}{2}\delta_j\sigma_i\cdot(1-m_j^2), \quad \text{Eq. 4}\]Now we need to estimate $\delta_j\sigma_i$. We know that:
\[m_i=\langle\sigma_i\rangle=\left\langle \tanh\big(\beta\langle J_{ij}\sigma_j + h_i\rangle\big)\right\rangle\]So, with $x_i \triangleq\ J_{ij}\sigma_j+h_i$:
\[\delta_j\sigma_i \approx \frac{\partial\langle\sigma_i\rangle}{\partial\sigma_j}\cdot(1-(-1)) = 2\cdot\frac{\partial\langle\sigma_i\rangle}{\partial x_i}\cdot\frac{\partial x_i}{\partial\sigma_j}\]The susceptibility $\frac{\partial\langle\sigma_i\rangle}{\partial x_i}=\beta(1-m_i^2)$, and $\frac{\partial x_i}{\partial\sigma_j}=J_{ij}$, thus we have:
\[\delta_j\sigma_i = 2\beta(1-m_i^2)J_{ij}, \quad \text{Eq. 5}\]Substitute Eq.5 into Eq. 4:
We have:
\[\langle\sigma_i\sigma_j\rangle-\langle\sigma_i\rangle\langle\sigma_j\rangle =\beta(1-m_i^2)J_{ij}(1-m_j^2)\]Aka:
\[\langle\sigma_i\sigma_j\rangle=\beta(1-m_i^2)J_{ij}(1-m_j^2)+m_i m_j, \quad \text{Eq. 6}\]Now we can substitute Eq. 6 into Eq 1 and get:
\[E(\beta,\mathbf{m}) = -\sum_{i \neq j}\frac{1}{2}J_{ij}m_i m_j - \sum_{i}h_i m_i -\frac{\beta}{2} \sum_{i \neq j} (1-m_i^2)J_{ij}^2(1-m_j^2), \quad \text{Eq. 7}\]The Entropy term ($\beta=0$):
When $\beta=0$, The Entropy term can be calculated directly as the information entropy assuming units state are independent from each other:
\[S(\beta=0,\mathbf{m}) =-\frac{1}{2}\sum_i\left[ (1+m_i)\log\left(\frac{1+m_i}{2}\right) +(1-m_i)\log\left(\frac{1-m_i}{2}\right) \right]\]The log of the partition function, $\beta f_{\mathrm{TAP}}$, when $\beta=0$, equals the negative of the entropy
\[\beta f_{\mathrm{TAP}}(\beta=0,\mathbf{m})=-S(\beta=0,\mathbf{m}), \quad \text{Eq. 8}\]The free energy when $\beta \neq 0$:
To derive the partition function when $\beta\neq 0$, we need to take advantage of the definition of energy in terms of the partition function:
\[E=\frac{\partial(\ln Z)}{\partial\beta}=\frac{\partial(\beta f_{\mathrm{TAP}})}{\partial\beta}\]Thus we can integrate the energy $E$ on $\beta$ to get the free energy at non zero $\beta$:
\[\beta f_{\mathrm{TAP}}(\beta,\mathbf{m}) =\beta f_{\mathrm{TAP}}(\beta=0,\mathbf{m})+\int_0^\beta E(\beta',\mathbf{m})\,d\beta', \quad \text{Eq. 9}\]Substitute Eq. 7 and Eq. 8 into Eq.9 and perform the integration:
\[\beta f_{\mathrm{TAP}}(\beta,\mathbf{m}) = -\frac{\beta}{2}\sum_{i \neq j}J_{ij}m_i m_j - \beta \sum_{i} h_i m_i -\frac{\beta^2}{4}\sum_{i \neq j}(1-m_i^2)J_{ij}^2(1-m_j^2)\] \[+\frac{1}{2}\sum_i\left[ (1+m_i)\log\left(\frac{1+m_i}{2}\right) +(1-m_i)\log\left(\frac{1-m_i}{2}\right) \right]\]Aka, the free energy is:
\[f_{\mathrm{TAP}}(\beta,\mathbf{m}) = -\frac{1}{2}\sum_{i \neq j}J_{ij}m_i m_j - \sum_{i}h_i m_i -\frac{\beta}{4}\sum_{i \neq j}(1-m_i^2)J_{ij}^2(1-m_j^2)\] \[+\frac{1}{2\beta}\sum_i\left[ (1+m_i)\log\left(\frac{1+m_i}{2}\right) +(1-m_i)\log\left(\frac{1-m_i}{2}\right) \right], \quad \text{Eq. 10}\]The TAP equation and be derived by finding the maximal of $f_{\mathrm{TAP}}(\beta,\mathbf{m})$ in the magnetization space, aka $\frac{\partial f_{\mathrm{TAP}}(\beta,\mathbf{m})}{\partial m_i}=0$, for all $i$:
\[-J_{ij}m_j - h_i + \beta J_{ij}^2(1-m_j^2)m_i + \frac{1}{2\beta}\log\left(\frac{1+m_i}{1-m_i}\right)=0\]Aka:
\[m_i = \tanh\left(\beta\left[J_{ij}m_j + h_i - \beta J_{ij}^2(1-m_j^2)m_i\right]\right), \quad \text{Eq. 11}\]This is the TAP equation with the Onsager reaction field.
Reference:
Nishimori, Hidetoshi. Statistical physics of spin glasses and information processing: an introduction. No. 111. Clarendon Press, 2001.