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A neural network for information seeking
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Humans and other animals often show a strong desire to know the uncertain rewards their

future has in store, even when they cannot use this information to influence the outcome.

However, it is unknown how the brain predicts opportunities to gain information and moti-

vates this information-seeking behavior. Here we show that neurons in a network of inter-

connected subregions of primate anterior cingulate cortex and basal ganglia predict the

moment of gaining information about uncertain rewards. Spontaneous increases in their

information prediction signals are followed by gaze shifts toward objects associated with

resolving uncertainty, and pharmacologically disrupting this network reduces the motivation

to seek information. These findings demonstrate a cortico-basal ganglia mechanism

responsible for motivating actions to resolve uncertainty by seeking knowledge about the

future.
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Humans and other animals often express a desire to know
the uncertain rewards their future has in store, even when
they cannot use this information to influence the

outcome1,2. This information-seeking behavior is not predicted
by standard theories of reinforcement learning and reward
seeking, and has been the subject of investigation in the fields of
psychology, economics, and neuroscience3–8. These studies have
revealed neuronal populations suitable for regulating specific
aspects of information-seeking behavior. Certain prefrontal cor-
tical neurons in monkeys and areas in humans are transiently
activated by visual cues associated with future information gain
about uncertain outcomes9,10. In addition, evidence from both
monkeys and humans suggests that gaining information about
uncertain outcomes can be a form of reward, since it activates the
same reward-prediction error circuitry as primary rewards like
food and water6,10–12.

These findings, however, leave a major question unanswered:
how does the brain motivate ongoing information-seeking
behavior? That is, how does the brain bridge the gap to sustain
our motivation to seek information, in between the time when we
first learn of an opportunity to gain information and the time
when we finally obtain it? At present, it is completely unknown
what neural networks are causally responsible for information-
seeking behavior, and it is unknown what neural code they could
use to regulate the strength of information seeking.

To gain insight into this question, we took inspiration from a
field of study that has performed extensive investigations into the
analogous question for conventional primary reward seeking.
These studies have revealed that the brain contains neural
populations encoding reward predictions. Many such neurons
have sustained activity that starts from the moment when reward
can first be predicted, scales with the expected amount of reward,
and ramps up to the expected time when the reward become
available13. These reward-prediction signals are linked to reward-
seeking behavior: they correlate with reward seeking14–17, and
perturbing them alters reward seeking18–20.

We therefore hypothesized that information seeking is moti-
vated by an analogous neural network encoding information
predictions. In order for a neural network to motivate ongoing
information seeking, it must (A) monitor the level of uncertainty
about future events, (B) anticipate the time when information will
become available to resolve the uncertainty, (C) activate before
information-seeking behaviors, such as gaze shifts to inspect the
source of uncertainty, (D) causally motivate behavior to obtain
information.

Here, we demonstrate that these criteria are met by an ana-
tomically interconnected network comprising three areas of the
primate brain: the anterior cingulate cortex (ACC) and two
subregions of the basal ganglia (BG), the internal-capsule-
bordering portion of the dorsal striatum (icbDS) and the ante-
rior pallidum, including anterior globus pallidus and the ventral
pallidum (Pal).

Results
A cortico-basal ganglia network monitors reward uncertainty.
To identify neurons selectively responsive to reward uncertainty,
we presented monkeys with fractal visual conditioned stimuli
(CSs) predicting future juice reward with 0%, 25%, 50%, 75%, and
100% probabilities21,22. All three areas contained numerous
neurons that were strongly activated or inhibited by CSs that cued
uncertain rewards (Fig. 1b; Fig. 1c, 25%, 50%, and 75% reward
CSs). These responses were primarily excitatory in ACC and
icbDS and often inhibitory in Pal (Fig. 1b). The average responses
were sustained ramping to the moment the uncertain outcome
would occur (Fig. 1c, d). Importantly, unlike conventional

reward-related neurons in these areas21–23, these neurons were
more responsive to reward uncertainty than reward value: their
responses were substantially lower for the CSs that cued certain
reward or certain no reward, even though they had the most
extreme values (Fig. 1c–e, 100 and 0% reward CSs).

Furthermore, many of these neurons responded to uncertainty
in a graded manner:24 they responded most in the condition with
maximal uncertainty (50% reward), less in conditions with
intermediate uncertainty (75 and 25% reward), and least in
conditions with no uncertainty (100 and 0% reward)21,22.
Specifically, all three areas had neurons with a significantly
different average response to the 50% CS than the 75 and 25%
CSs (Fig. 1f, p < 0.05, signed-rank test) at greater prevalence than
expected by chance (19% of neurons (n= 32/165); p < 0.001 in
each area, binomial tests). Of these neurons, 97% had significantly
stronger responses to maximal uncertainty than to intermediate
uncertainty, consistent with graded uncertainty coding, while
only 3% had the opposite pattern (Fig. 1f, n= 31 vs. n= 1). As a
result, there were significantly more neurons with responses
consistent with graded uncertainty coding than neurons with the
opposite pattern (Fig. 1f; p < 0.001 in each area, binomial tests)
and the net differential activity was greater for maximal
uncertainty than intermediate uncertainty (p < 0.01 in each area,
signed-rank tests). Further tests confirmed that these areas had
the hallmarks of graded uncertainty coding (Supplementary
Note 1).

The network refined its signals over time. Uncertainty signals
emerged markedly earlier in Pal, but this initial signal did not
predominantly encode the graded level of uncertainty (Fig. 1d,
arrows; significantly shorter latency in Pal than ACC and icbDS,
both p ≤ 0.005, permutation tests; Supplementary Fig. 1). Uncer-
tainty signals later emerged in ACC and icbDS at similar latencies
(Fig. 1d; no significant latency difference, p= 0.35), and these
areas first significantly encoded the graded level of uncertainty
(50 > 25, 75%, Fig. 1d; Supplementary Fig. 1). Thus, a rapid but
rough Pal uncertainty signal was followed by a slower, graded
signal in cortico-striatal areas.

Given the closely related uncertainty signals in these areas, we
tested whether they form an interconnected network. We injected
the bidirectional tracer Lucifer yellow (LY) into the internal-
capsule-bordering regions of DS where uncertainty-responsive
neurons were found (Fig. 1a; Supplementary Fig. 2). This
produced a large number of retrogradely labeled cells in the
ACC (Fig. 1a), including the subregion containing uncertainty-
responsive neurons (Fig. 1b), indicating a unidirectional
ACC→icbDS projection. In addition, this produced both
retrogradely labeled cells and anterogradely labeled fibers in
Pal (Fig. 1a), including the region containing uncertainty-
responsive neurons (Fig. 1b), indicating bidirectional icbDS→Pal
and Pal→icbDS projections. Bidirectional icbDS→Pal and
Pal→icbDS projections were confirmed by tracer injection into
Pal (Supplementary Fig. 2). These connections are consistent with
established cortico-BG circuits25–27, and are ideally suited to
support the uncertainty coding we observed. Notably, these
connections are consistent with uncertainty coding being
primarily excitatory in ACC and icbDS and more commonly
inhibitory in Pal (Fig. 1b; Supplementary S1) since cortex–
striatum projections are excitatory and striatum–pallidum
projections are mutually inhibitory28. They are also consistent
with uncertainty signals emerging first in Pal, as Pal can
communicate with ACC and icbDS via direct Pal→icbDS
projections and classic cortex→Pal→thalmus→cortex loops25.

The network anticipates information to resolve uncertainty.
Our findings identify a cortico-BG network that signals reward
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uncertainty with ramping anticipatory activity. This raises a key
question: what event is the network anticipating? Most crucially,
does the network anticipate the moment of receiving an uncertain
outcome per se, or the moment of receiving information to
resolve the uncertainty?

To answer this question, we designed a task to separate the
time of receiving information from the time of receiving the
outcome (information task, Fig. 2a). On each trial, the monkey
was shown a fractal CS that indicated that a reward would be
delivered in 3 s with 100%, 50%, or 0% probability. There were
two types of CSs. Information-predictive CSs (Info CSs) were
followed after 1 s by an informative visual cue whose color
indicated the upcoming outcome (e.g., orange → reward, gray →
no reward). Noninformation-predictive CSs (Noinfo CSs) were
followed by a noninformative cue whose color was randomized
on each trial and hence did not indicate the upcoming outcome.
Note that in this terminology the terms Info CS and Noinfo CS
refer to whether the CS is followed by an informative cue (not to
whether the CS itself conveys information about reward).
Importantly, there was no way for animals to use the information
to control or influence the outcome. Thus, neurons that anticipate
the moment of receiving information to resolve uncertainty
(Fig. 2b, Hypothesis 1) should be activated at distinct times on
Info and Noinfo CS trials. On Info CS trials they should activate
in anticipation of receiving information from the informative cue.
On Noinfo CS trials, they should activate in anticipation of
outcome delivery, because that is when the animal is first
informed of the outcome (by receiving either juice or no juice).
On the other hand, neurons that simply anticipate uncertain
outcomes (Fig. 2b, Hypothesis 2) should respond identically

during the Info and Noinfo CSs because both types of CSs are
associated with identical future reward outcomes (the same
reward probability, amount, and timing). They should only
differentiate between Info and Noinfo trials in anticipation of the
outcome, when outcomes are certain on Info trials but uncertain
on Noinfo trials (Fig. 2b, right, blue arrow).

Indeed, the cortico-BG network contained a substantial
population of neurons that anticipated the moment of gaining
information to resolve reward uncertainty. For example, the
icbDS neuron in Fig. 2c closely resembled the hypothetical
information-anticipatory signal (compare with Fig. 2b). This
neuron was activated in advance of receiving information, both
on Info CS trials during the CS period in anticipation of viewing
an informative cue (top, red) and on Noinfo CS trials during the
cue period in anticipation of reward delivery (bottom, blue).
These activations were highly similar even though the informa-
tion on these two trial types was conveyed through different
modalities (visual cue vs. juice delivery). Importantly, this neuron
had much lower activity during the same time periods when
information was not expected (e.g., during the Noinfo CS in
advance of noninformative cues, and during the informative cues
in advance of the already-known outcome). The Pal neuron in
Fig. 2d had a similar response, except with inhibitions rather than
excitations. As in the original uncertainty task, these responses
were not simply anticipating juice reward or encoding the value
of the stimulus, because they were stronger when reward was
uncertain than certain (50% > 100% reward).

We recorded from 154 uncertainty coding neurons using
information tasks (ACC n= 63, icbDS n= 24, Pal n= 67;
Methods). We defined a neuron’s uncertainty signal as its ROC
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Retrogradely labeled cell bodies (gray) were found in ACC (top; inset) and Pal (bottom). Anterogradely labeled fibers (orange area) were found in Pal
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Scale bar: 2 mm. b Reconstruction of recording sites. Circles indicate locations of neurons that responded to uncertainty with significant excitation (black)
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locations. c Example neurons in each area. The neurons have excitatory or inhibitory ramping activity up to the time of uncertain reward: strongest for
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100%; gray, 0%). Top: spike times (dots) on each trial (rows). Bottom: smoothed firing rates. d Population average normalized activity of uncertainty
coding neurons in each area. Shaded areas are ± 1 SE. Arrow and text indicate latency of uncertainty coding. Gray area below x-axis is the pre-outcome
analysis window. e Population average pre-outcome normalized activity is well fitted with a second-order polynomial function of reward probability (gray
lines; shaded areas are ± 1 bootstrap SE) showing the inverted-U relationship with reward probability expected for uncertainty coding. f Graded coding of
reward uncertainty. Histograms show each neuron’s difference in normalized activity between CSs with high (50%) vs. intermediate (25, 75%)
uncertainty. Colored neurons have significantly differential activity: more normalized activity for high uncertainty (blue) or intermediate uncertainty
(turquoise). *** indicates more neurons than expected by chance (p≤ 0.001, binomial test). Arrows indicate means of all neurons (open arrow) and all
neurons with significant differential activity (filled arrows); **, *** indicate the significance of their difference from zero, p < 0.01, 0.001 (signed-rank tests)
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area for using its firing rate to distinguish trials with uncertain
rewards from certain rewards. Crucially, we classified neurons as
uncertainty coding solely based on whether they had a significant
uncertainty signal during a 0.5s time window before outcome
delivery on Noinfo trials (p < 0.05, rank-sum test). We then
independently asked whether the same neurons also had
uncertainty signals before cue onset and on Info trials.
Specifically, we calculated an Informative Cue Anticipation Index
defined as the difference between the uncertainty signal on Info
and Noinfo CS trials. In many neurons, this index became
different from zero shortly after CS onset and built up to the time
of the cue, in either an excitatory or inhibitory manner (Fig. 3a).
We defined a cell as information-anticipatory if the index was
significantly different from zero during the 0.5 s immediately
before cue onset. Information-anticipatory neurons were highly
prevalent in all three areas of the network (Fig. 3b).

Importantly, as expected for an information-anticipatory
signal, the same neurons that anticipated informative cues on
Info trials also commonly anticipated the time of uncertain
outcomes on Noinfo trials, and did so in similar manners. To
quantify this, we defined an analogous Uncertain Outcome

Anticipation Index as the change in a neuron’s uncertainty signal
from the beginning to the end of the cue period on Noinfo trials.
This index was significant in substantial number of single
neurons in all three areas (37%, 63%, and 34% of neurons in
ACC, icbDS, and Pal; more neurons than expected by chance in
all areas, binomial tests, all p < 0.001) and tended to be most
prevalent in icbDS (higher fraction of significant neurons than
ACC or Pal, p= 0.0586 vs. ACC, p= 0.0313 vs. Pal, permutation
tests). There was a strong correlation between the two neural
anticipation indexes (rank correlation= 0.40, p < 0.001, Fig. 3d).
That is, many neurons were activated in anticipation of receiving
information from both cues and outcomes, while other neurons
were inhibited for both. Thus, when examining neurons whose
uncertainty signals on Noinfo trials significantly anticipated the
time of the outcome, the average time course of their uncertainty
signals on Info trials bore a strong resemblance to a hypothetical
information-anticipatory signal (Fig. 3c, compare with Fig. 2b).
This was significantly different from hypothetical encoding of the
current level of uncertainty or anticipation of uncertain outcome
delivery (Supplementary Fig. 3). Similar results were found in all
areas (Supplementary Fig. 4).

Monkeys anticipate information to resolve uncertainty. Given
the network’s information-predictive activity, we next asked
whether information predictions evoke information-seeking
behavior in monkeys. Monkeys, like humans, scan uncertain
environments for information with their eyes. When information
is available and can be obtained with a saccade, monkeys saccade
with shorter latencies to view informative than non-informative
cues6,7. However, it is unknown how monkeys behave at the time
this network ramps up its activity: when information is not yet
available, and monkeys can freely gaze in anticipation of the
moment it will arrive. We hypothesized that monkeys anticipate
information by directing their gaze to objects in their environ-
ment associated with the uncertainty to be resolved. Consistent
with previous work, we found that monkeys anticipated juice
rewards by licking (Supplementary Fig. 4), and their gaze was
attracted to visual objects based on their juice reward value
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(Fig. 4a, b, 100% CS > 0% CS, informative reward cue > no-
reward cue).

Strikingly, however, monkeys’ gaze was even more strongly
attracted to objects based on their uncertainty, especially in the
moments before receiving information to resolve that uncertainty.
On Info trials, monkeys could anticipate receiving information
during the Info 50% reward CS as they awaited the informative
cue (Fig. 4a, red arrow). Indeed, monkeys were substantially more
likely to gaze at the Info 50% reward CS than any other CS at the
moment the cue was about to appear (signed-rank tests, all p <
0.001). Importantly, this attraction was specifically related to
anticipating information, not reward value or uncertainty per se.
Monkeys gazed at the Info 50% reward CS far more than the
Noinfo 50% reward CS, which was associated with exactly the
same reward value and uncertainty but was not followed by
information (Fig. 3b, signed-rank test, p < 0.001), and far more
than the 100% reward CSs, which were associated with double the
reward value but no uncertainty (Fig. 4a, b; signed-rank test, p <
0.001). Furthermore, this avid gaze at the Info 50% reward CS
occurred despite near-zero licking, indicating that animals were
anticipating the delivery of information, not juice (Supplementary
Fig. 4).

Similarly, on Noinfo trials, monkeys could anticipate receiving
information at the end of the cue period as they awaited reward
delivery or omission (Fig. 4b, blue arrow). Indeed, at that time
monkeys gazed more at the cue during Noinfo 50% reward trials
than all other conditions, even 100% reward trials that had double
the reward value (signed-rank tests, all p < 0.001). This is
remarkable because the information was delivered through a
nonvisual modality (juice or no juice) and the 100%, 50%, and 0%

Noinfo trials all used exactly the same set of visual cue stimuli.
Even so, monkeys gazed at those cues most avidly on Noinfo 50%
reward trials in the moments before uncertainty was going to be
resolved. Thus, when we analyzed monkeys’ gaze in the same
way, we analyzed neural spiking activity, we found that all
monkeys had information-anticipatory behavior indicated by
significantly positive Info Cue Anticipation and Uncertain
Outcome Anticipation indexes (Fig. 4c, all p < 0.001, signed-
rank test; Supplementary Fig. 5).

Network activity predicts information-anticipatory behavior.
Further investigation revealed that the monkeys’ information-
anticipatory gaze was linked to moment-to-moment variability in
the network’s information-anticipatory signals. Examining time
windows immediately before receipt of information, we found
that neural information signals were present even at moments
when the monkey’s gaze was away from the visual stimulus, but
were significantly stronger during matched time points from
other trials when the monkey’s gaze was on that visual stimulus
(Fig. 5a).

Importantly, neural activity was not simply enhanced in a
generalized manner whenever gaze was on any stimulus, nor was
the enhancement the result of encoding simple visuomotor
variables, such as gaze position or saccade direction (Supplemen-
tary Fig. 6). Instead, the enhancement took the form of a gain-like
increase in the strength of neural information signals: activity was
primarily enhanced when gazing at stimuli associated with
uncertainty and its resolution, and was less affected when gazing
at stimuli associated with certain outcomes (Fig. 5a; significantly
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greater effect of gaze on normalized activity on uncertain trials
than certain trials, information task: p= 0.0009, standard
uncertainty tasks: p < 0.0001, signed-rank tests). Thus, while
information-anticipatory signals were present even after control-
ling for gaze state (Supplementary Fig. 7), they were particularly
enhanced during gaze at visual stimuli associated with obtaining
information.

These results suggested that the network’s information signals
are well suited to motivate information-seeking gaze shifts. We
next set out to test this by investigating the link between neurons
and behavior and through direct pharmacological disruption.

First, we asked whether neural information signals strength-
ened before gaze shifts, consistent with a causal role in motivating
information seeking, or after gaze shifts, potentially reflecting a
sensory response to the stimulus being brought closer to the
fovea29. To test this, we pooled data from all uncertainty-related
neurons recorded in all three areas of the network in all tasks
(n= 222, 127, 129, in ACC, icbDS, and Pal; Supplementary
Figs. 5–6; Supplementary Table 1). We aligned neural activity at
the time of each gaze shift onto or off of the visual stimulus
(Fig. 5b) and compared it with activity from matched control
trials which had no gaze shift at that time but were matched in all
other respects (i.e., same neuron, same CS, same cue, similar

initial gaze distance to the CS). The gaze shift trials and matched
control trials had similar gaze trajectories up until the moment of
the gaze shift (Fig. 5c). Strikingly, however, neural activity was
significantly altered long before the gaze shift, with significant
enhancement of activity before gaze shifts onto the stimulus and
significant suppression of activity before gaze shifts off of the
stimulus (Fig. 5d). This gaze-shift-related activity predominantly
occurred when animals were anticipating information about an
uncertain reward outcome; it was greatly reduced when reward
was certain to be delivered or omitted (Fig. 5d). Also, this activity
grew stronger in successive time windows over the course of the
gaze shift (Fig. 5d; greater difference in activity between gaze shift
on vs. off in each analysis time window compared with the
previous window, p < 0.05, signed-rank test). Similar tendencies
were present for all three regions and for all CS locations and gaze
shift directions (Supplementary Fig. 6).

To quantify each neuron’s modulation related to gaze and its
time course relative to gaze shifts, we fit each neuron’s activity
with a model of its responses to all CS and cue conditions (see the
Methods section). One set of parameters modeled the effects of
gaze-related modulation (Fig. 6a, top): a multiplicative change in
response gain (e.g., enhanced information-related signals, similar
to Fig. 5a), an additive increase in firing rate (e.g., sensory or
motor-related effects that have no effect on information signals),
or a combination of both. A second set of parameters modeled
the time course over which these modulations occurred relative to
gaze shifts (Fig. 6a, bottom): neurons could modulate their
activity either before or after gaze shifts, and their modulation
could come online either rapidly or gradually (similar to Fig. 5d).
The model accurately recovered the true effects and time courses
of gaze-modulation in simulated data sets (Supplementary Fig 8).

The model fits indicated significant gaze-related modulation in
31% of neurons (permutation tests, p < 0.05; all areas above
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chance, binomial tests, p < 0.05, Fig. 6b, c). Gaze-modulation was
best fit as including multiplicative changes in response gain rather
than simply additive changes in firing rate, predominantly
increases in gain rather than decreases (Fig. 6d). Thus, neural
response strength increased during gaze at the stimulus, by a
median of 33% across all neurons and 133% in significantly gaze-
related neurons (Fig. 6d, e). These gain changes were present in
all animals and tasks in which gaze was attracted by resolution of
uncertainty (Supplementary Fig. 5). The mean time course of
gaze-modulation in these neurons began long before the gaze
shift in all areas, reaching 30–50% of maximal modulation before
the eye movement occurred (Fig. 6f). Gaze-modulation began
significantly earlier in ACC than icbDS and Pal. This was the case
when comparing gaze-modulation latencies based on each area’s
mean time course of modulation (Fig. 6f, both p < 0.01,
permutation tests) or latencies of modulation in individual
neurons (Fig. 6f inset, both p < 0.01, rank-sum tests). Thus, while
uncertainty signals emerged earliest in Pal (Fig. 1), fluctuations in
ACC were first linked to future behavior.

Thus, the cortico-BG network has spontaneous fluctuations in
its information-anticipatory signals. These changes start in ACC,
continue in BG, and are followed by gaze shifts toward or away
from the object associated with resolution of uncertainty.

Perturbations of network activity impair information seeking.
Given these findings, we hypothesized that information-
predictive neurons in the basal ganglia causally motivate gaze
shifts to gain information. If so, temporarily inactivating the basal
ganglia subregions that contain these neurons should impair the
motivation to seek information. We therefore trained monkeys on
a task in which gaze shifts were required to gain information
(gaze-contingent information task, Fig. 7a)6,7. Monkeys fixated a
spot of light and continued to fixate during a delay period while a

50% reward CS was presented on either the left or right. After the
fixation point disappeared (“go” signal), the monkey was free to
gaze in any manner they chose. On trials with an Info CS, gazing
at the CS caused it to be immediately replaced by an informative
cue indicating the trial’s outcome. On trials with a Noinfo CS,
gazing at the CS caused it to be replaced by a noninformative cue.
Importantly, gazing at the CS allowed monkeys to gain infor-
mation about the outcome but did not allow them to influence it
in any way (e.g., the outcome always occurred a fixed time after
the go signal regardless of whether and how they gazed at the CS).
In addition, we encouraged animals to anticipate the moment
information would be available by using a fixed duration between
CS onset and the go signal. Indeed, animals had strongly antici-
patory behavior, at times saccading to the CS at short latencies
before they could have reacted to the go signal (Fig. 7b, short-
est response times (RTs)). Monkeys were highly motivated to seek
information, shown by faster RTs to gaze at Info CSs (Fig. 7b).
We quantified this response bias favoring the Info CS with an
Infobias Index (Fig. 7b) which was significantly positive in every
session for every animal (n= 43 sessions, all p < 0.05, permuta-
tion tests). Furthermore, the network had similar information
signals in the gaze-contingent task, indicating that its signals are
present in this context where gaze shifts are required to gather
information (Supplementary Fig. 9).

Based on the lateralized functions of basal ganglia circuitry30,31,
we predicted that unilateral inactivations would reduce
information-seeking behavior directed toward objects in contral-
ateral space (Supplementary Note 2). Indeed, unilateral injections of
muscimol, a GABAA agonist, into either icbDS or Pal in the vicinity
where information-anticipatory neurons were recorded caused the
information-seeking response bias to be significantly reduced in
contralateral space (Fig. 7c, d; icbDS, n= 9 sessions, p= 0.028; Pal,
n= 8, p= 0.031; all inactivations, n= 17, p= 0.0009; permutation
tests; Supplementary Figs. 2, 10; Supplementary Table 2). No
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significant change occurred in a control data set consisting of sham
and saline injections (Fig. 7b, gray, n= 26 sessions, p= 0.93,
permutation test). Thus, relative to control sessions, inactivations
caused the information-seeking bias to be significantly reduced
(p= 0.005, permutation test). In addition, inactivations had no
significant effect on information seeking for ipsilateral CSs (all p >

0.4, permutation test; Supplementary Fig. 11). Thus, inactivations
caused the information-seeking bias to become lateralized—
significantly shifted away from the contralateral side (p= 0.019,
permutation test; Supplementary Fig. 11).

We further investigated the mechanism by which icbDS and
Pal activity promote information seeking. Our data indicate that
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icbDS and Pal have reciprocal inhibitory connections and tend to
encode information predictions in opposite manners, with icbDS
neurons activated and Pal neurons commonly inhibited. We
therefore hypothesized that icbDS and Pal activity have opposite
influences on motivated gaze behavior, such that information-
oriented gaze shifts are motivated by icbDS activity and
suppressed by Pal activity. A simple network model implement-
ing this hypothesis (Fig. 7e) reproduced the observed behavior on
control sessions and predicted that inactivating icbDS and Pal
should impair information seeking in distinct manners (Fig. 7f).
The icbDS is primarily active during the Info CS, so inactivation
should slow gaze shifts to the Info CS while leaving responses to
the Noinfo CS relatively intact (Fig. 7f, left). Conversely, Pal is
normally inhibited during the Info CS, so inactivation should
leave responses to the Info CS relatively intact while speeding
gaze shifts to the Noinfo CS (Fig. 7f, middle).

Both predictions were borne out in the data. icbDS inactivation
slowed gaze shifts to the Info CS but did not significantly change
RTs to the Noinfo CS (Fig. 7g, left, Info CS p= 0.0003, Noinfo CS
p= 0.64, rank-sum tests; significantly different change in
normalized RT for Info CSs vs. Noinfo CSs, indicated by a
significant interaction term in a two-way ANOVA using the
factors CS type (Info or Noinfo) and epoch (pre- or post-
injection), F1,1808= 7.12, p= 0.008; Methods). Conversely, Pal
inactivation speeded gaze shifts to the Noinfo CS, but did not
significantly change RTs to the Info CS (Fig. 7g, middle, Info CS
p= 0.17, Noinfo CS p= 0.001, rank-sum tests; significantly
different change in normalized RT for Info vs. Noinfo, two-way
ANOVA, F1,1955= 7.89, p= 0.005). Thus, a direct comparison
between inactivations of the two areas revealed significantly
different effects on behavior. icbDS inactivation slowed normal-
ized RTs relative to Pal inactivation (permutation test, p=
0.0043). This occurred due to inactivations changing RTs in the
predicted manner, and not in the orthogonal manner (significant
effect of icbDS inactivation slowing saccades to the Info CS and
Pal inactivation speeding saccades to the Noinfo CS, permutation
test, p < 0.0001; no significant effect of icbDS slowing saccades to
the Noinfo CS and Pal speeding saccades to the Info CS, p=
0.3915; Methods). These RT changes included anticipatory
saccades, consistent with a disruption of information-
anticipatory activity (Supplementary Fig. 12). Thus, icbDS activity
motivated gaze shifts to gain information, while Pal activity
suppressed motivation to gaze at objects that would not yield
information.

Importantly, these inactivation effects on information seeking
were not caused by generalized effects on overall motivation to
perform the task, which could potentially be affected by
inactivating adjacent circuits involved in primary reward-
seeking behavior. Specifically, icbDS inactivations slowed RTs to
the Info CS without reducing measures of general motivation,
while Pal inactivations speeded RTs to the Noinfo CS without
increasing measures of general motivation (Supplementary
Fig. 11). If anything, Pal inactivations speeded RTs to the Noinfo
CS in spite of a modest reduction in general motivation to
perform the task, consistent with previous Pal inactivations32–38.

Discussion
Our work demonstrates a neural network that motivates actions
to resolve uncertain situations by seeking knowledge about future
rewards. Previous studies have identified cortical and basal
ganglia networks that predict when future primary rewards are
available and motivate behavior to seek those rewards13,30,39,40.
Indeed, our monkeys had strong tendencies to gaze at visual
stimuli based on their reward value. However, the subset of
ACC–icbDS–Pal neurons we report here have relatively little

response to reward value, and hence their primary function is not
likely to be control of such reward value-oriented behavior.
Instead, they have a quite distinct function: they predict when
information will become available to resolve reward uncertainty
and motivate gaze behavior to obtain that information. This
information-seeking gaze behavior can be even more potent than
the attraction of gaze to primary reward: our monkeys gazed
more avidly at the CS that provided informative cues than any
other stimulus, even CSs and cues with double its expected
reward value. Our data show that this information-seeking gaze
behavior is tightly coupled to the cortico-BG network. Fluctua-
tions in its information-anticipatory signals are followed by
immediate gaze shifts toward or away from the information-
related stimulus, and artificial perturbations of its activity inter-
fere with information seeking in the manner predicted by its
neural signals and connections.

Our data are crucial evidence for theories of reward learning,
overt attention, and economic decision-making, which propose
that objects and events are assigned salience both by neural sys-
tems that track primary reward value and its uncertainty41–44,
and a system that anticipates information to resolve
uncertainty2,6,45–47. Furthermore, our data demonstrate a neural
mechanism for information seeking to compete with primary
reward to drive ongoing gaze behavior7,9,10,48.

In fact, information seeking goes hand-in-hand with primary
reward seeking in natural environments. Most experimental
studies of reward seeking begin with the presentation of a cue
stimulus (or context) that tells the subject what reward to predict
and what actions are needed to obtain it. However, rewards in
natural environments can be scarce and uncertain, and fully
predictive reward cues rarely come for free or materialize from
thin air. Organisms must first seek and obtain information about
the rewards that are available in their environment; only then can
they predict the value of those rewards and use their value to
motivate reward-seeking behavior. In this sense, the cortico-BG
network for information seeking may be critical to ensure that
organisms seek out the reward-related cues in their environment
that are necessary for the proper operation of the well-known
networks that predict and seek primary rewards13,30,39,40,49.
Indeed, information-related neurons in all three areas were
intermixed with other neurons that encoded the reward value of
stimuli and outcomes, as expected from previous studies of these
areas13,22,30,39,40,49–52.

This suggests that information- and primary reward-related
neurons are well-positioned to support each other’s computa-
tions. For instance, information-anticipatory activity in our tasks
can be interpreted as ramping up to the expected time of a large
reward-prediction error (evoked by being informed of a pleasing
or disappointing outcome). Thus, while most uncertainty-related
neurons in these areas do not encode reward-prediction errors
themselves22, their activity could prepare local reward-processing
networks to handle upcoming reward-prediction error or surprise
signals, processes in which ACC, dorsal striatum, and pallidum
have been implicated40,53–57. Conversely, the network could learn
its information-anticipatory activity by treating reward-
prediction errors as a teaching signal, such that surprising out-
comes evoke large prediction errors which lead to greater
ramping on future trials, while correctly predicted outcomes
evoke small prediction errors which lead to reduced ramping on
future trials. This would help explain why icbDS ramping activity
is strong during initial exposure to a novel, ambiguous situation,
but rapidly diminishes if animals can learn to correctly predict its
reward outcomes21. This learning process could be mediated by
input from midbrain dopamine neurons, which encode phasic
reward-prediction errors in response to informative feedback13,58.
Other neuromodulators could serve this role as well. The network
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receives acetylcholine from tonically active neurons in the stria-
tum which respond during reward-prediction errors59 and from
the basal forebrain which contains neurons with activity related
to surprise60–62; the network also receives norepinephrine from
the locus coeruleus, which contains neurons with activity related
to certain rewarding stimuli and actions63–65 and is linked to
pupil dilation66 which can covary with surprise and
uncertainty67,68. This raises the possibility that disruption of
neuromodulators in the network could impair learning or per-
formance of information-seeking behavior.

Importantly, monkeys expressed a strong preference for the
information consistent with it having a high subjective value9

even though the information did not have any objective value, in
the sense that it did not help the monkeys take action to gain
more juice reward (a quantity called the value of information or
value of exploration in decision theory and reinforcement
learning69,70). An important area of future research will be how
these two factors combine to guide behavior and whether they are
implemented by shared or distinct neural networks. Notably, our
study identifies a network that motivates seeking of a specific type
of information (i.e., the presence or absence of an upcoming
reward). It remains unknown whether this network could also
motivate seeking of other types of information, such as infor-
mation about instrumental contingencies (i.e., what action will be
required to gain the reward71). In natural environments, these
types of information are likely to synergize with each other: if an
agent has a subjective preference to resolve uncertainty in order
to better predict future rewards, then the agent will likely be
better at learning the objective value of resolving that uncertainty
to better take actions and control rewards.

While information-anticipatory signals were present in all
three areas of the cortico-BG network, each area also had distinct
features suitable for unique contributions to information seeking.
Notably, fluctuations in ACC information signals were the earliest
predictor of future behavior. ACC information signals changed
several hundred milliseconds before gaze shifts, while BG signals
changed more proximally to behavior. This finding supports and
extends theories that ACC is especially important for motivating
behavioral shifts to explore available prospects and learn their
reward value and other properties72–74, tracking their level of
uncertainty and how it evolves over time as beliefs are updated in
response to surprising outcomes12,73,75–79, and using this infor-
mation to decide how to control future cognition and
behavior73,80. In particular, while it is well acknowledged that the
ACC needs to receive a broad array of reward- and uncertainty-
related information to perform these functions73,80, our data
indicate that the ACC is not a mere passive recipient of this
information. Rather, the ACC is tightly linked to the emergence
of motivational drive to actively seek out that information from
the environment. Information-anticipatory activity would be
especially useful from the perspective of theories that the ACC
regulates foraging73, because knowing the properties of the
potential sources of reward in the environment is a fundamental
requirement for making efficient foraging decisions. It would also
be useful from the perspective of theories that the ACC regulates
cognitive control80, because one of the most crucial times to bring
cognitive resources online is in preparation for receiving a new
piece of information, in order to process it quickly and prepare an
effective response.

In addition, our findings indicate that information-seeking
behavior is motivated by a BG circuit mechanism that is analo-
gous but distinct from the BG circuits that motivate conventional
reward-seeking behavior. There are two key parallels. First,
behavior-related fluctuations in BG information signals follow
fluctuations in the cortex and are proximal to behavioral gaze
shifts. This is consistent with classic theories of cortico-BG

circuits25 and work on the cortex–striatum interactions81–83,
suggesting that cognitive and motivational signals can be com-
puted in the cortex and then sent to BG whence they are pro-
cessed and used to guide behavior. Second, the specific functions
of each BG subregion in information seeking are consistent with
classic BG circuit motifs (Fig. 7e): icbDS and Pal neurons com-
monly encode information signals with opposite signs and these
areas have opposite causal influences on behavior, such that
icbDS activity speeds gaze shifts to gain information while Pal
activity slows gaze shifts that will not provide information. This
resembles analogous findings for BG areas involved in primary
reward seeking: antagonizing D1 receptors in visuomotor dorsal
striatum slows gaze shifts to gain large juice rewards84, while
inactivation of Pal speeds gaze shifts to gain small juice rewards35.

Importantly, however, the BG mechanisms underlying physical
reward- and information-oriented behavior are at least partially
distinct at the neuronal and behavioral levels: first, when animals
avidly gazed at the Info CS in anticipation of viewing the infor-
mative cue, they had near-zero licking behavior indicating that
they were not anticipating juice reward; second, the cortical and
BG neurons we identified that are linked to information-
anticipatory behavior primarily anticipated the moment of
gaining information, not the moment of gaining juice reward;
third, inactivation effects on information seeking could not be
explained as a result of generalized effects on juice reward seek-
ing. Thus, this cortico-BG network appears to be specially focused
on online information-seeking behavior. This is in contrast to
other BG circuits and interconnected areas involved in reward-
prediction errors and reinforcement, which commonly encode
information and primary reward in a common currency6,11.

In addition, whereas classic theories of cortico-BG circuits
classify Pal as an output structure25,85, our data extend recent
results37,38,86 by showing that Pal in fact responds earliest to
uncertainty-related events. This is consistent with theories that
BG rapidly selects salient stimuli to be used to guide future
behavior87,88, perhaps based on input from areas specialized for
rapid assessment of objects and their incentive properties, such as
the amygdala89 and brainstem90. Our data support a scenario, in
which (A) Pal rapidly signals a rough assessment of reward
uncertainty; (B) ACC and icbDS next signal the precise graded
level of uncertainty; (C) the resulting representation of uncer-
tainty in all three areas ramps up to the time of its resolution by
information, and drives ongoing information-seeking behavior.

Given the link between the ACC–icbDS–Pal network and
information-seeking behavior, variations in the network’s activity
could be responsible for the natural variations in information-
seeking behavior that are commonly found across
individuals5,10,12 and tasks3,91. In the same vein, it is notable that
ACC and BG are implicated as sites of dysfunction and targets for
treatment in human disorders of motivated behavior (such as
obsessive–compulsive disorder92,93, Parkinson’s disease94, and
drug addiction95) that are known to affect reward- and
uncertainty-related behavior96–101. Our results raise the possibi-
lity that these disorders and treatments may also affect the
motivation to seek information about future events. While this
has been little studied, there is evidence that Parkinson’s disease
reduces the motivation to gather information needed for
upcoming decisions102 and impairs learning from early access to
information about uncertain outcomes103. Taken together, our
work provides a foundation for understanding the neural network
mechanisms by which information is detected, predicted, and
used to motivate behavior.

Methods
General procedures. Four adult male rhesus monkeys (Macaca mulatta) were
used for behavioral, recording, and inactivation experiments (Animals B, R, Z, and
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W). All procedures conformed to the Guide for the Care and Use of Laboratory
Animals, and were approved by the Washington University Institutional Animal
Care and Use Committee. A plastic head holder and plastic recording chamber
were fixed to the skull under general anesthesia and sterile surgical conditions. The
chambers were tilted laterally by 35–40° and aimed at the anterior cingulate and the
anterior regions of the basal ganglia. After the animals recovered from surgery, they
participated in the experiments.

Data acquisition. While the animals participated in the behavioral tasks, we
recorded single neurons in the anterior cingulate cortex (ACC), internal-capsule-
bordering regions of the dorsal striatum (icbDS), and anterior pallidum, including
the ventral pallidum and the anteriormost part of the globus pallidus external
segment (Pal). Electrode trajectories were determined with a 1-mm spacing grid
system and with the aid of MR images (3 T) obtained along the direction of the
recording chamber. This MRI-based estimation of neuron recording locations was
aided by custom-built software (PyElectrode104). In addition, in order to further
verify the location of recording sites, after a subset of experiments the electrode was
temporarily fixed in place at the recording site and the electrode tip’s location in
the target area was verified by MRI (Supplementary Fig. 2).

Single-unit recording was performed using glass-coated electrodes (Alpha
Omega). The electrode was inserted through a stainless steel guide tube and
advanced by an oil-driven micromanipulator (MO-97A, Narishige). Signal
acquisition (including amplification and filtering) was performed using an Alpha
Omega 44 kHz SNR system. Action potential waveforms were identified online by
multiple time-amplitude windows with an additional template-matching algorithm
(Alpha Omega). This recording was restricted to single neurons that were isolated
online. A subset of Pal neurons (n= 36) were instead recorded using 16-
channel V-probes (Plexon) and isolated offline using Offline Sorter
(Plexon). Neuronal and behavioral analyses were conducted offline in Matlab
(Mathworks, Natick, MA).

Eye position was obtained with an infrared video camera (Eyelink, SR
Research). Behavioral events and visual stimuli were controlled by Matlab
(Mathworks, Natick, MA) with Psychophysics Toolbox extensions. Juice, used as
reward, was delivered with a solenoid delivery reward system (CRIST Instruments).
We monitored the magnitude of anticipatory mouth movements using a strain
gauge attached to the juice spout. To detect licks, the strain gauge signal was
acquired at 1 kHz, converted to its absolute value, and smoothed with an eighth-
order low-pass Butterworth filter with 10 Hz cutoff frequency. Licks were defined
as moments during a trial when the strain gauge signal rose above a threshold. The
lick threshold was set for each session based on the distribution of baseline signals
in that session, as follows. The baseline signal was measured on each correct trial as
the mean signal in a 400 ms window beginning at the start of each trial (before the
onset of the central trial start cue). The lick threshold was then set equal to the
mean of the baseline signals plus two times their SD.

Behavioral tasks. We analyzed data recorded from several behavioral tasks which
can be grouped into two major categories: standard uncertainty tasks and
information tasks.

The standard uncertainty tasks are described in detail in previous work21–23 and
described again here. They each used a distinct set of fractal visual CSs with
different associated outcomes. However, they all shared the following general
outline. Animals were presented with a small white circular trial start cue at the
center of the screen. In some tasks, animals were required to fixate the trial start
cue for a fixed duration (typically 0.5–1 s) for the trial to continue; if they failed to
fulfill this requirement within a grace period (typically 5 s), the trial would be
considered an error, they would receive a timeout, and the trial would repeat. In
other tasks, animal were not required to fixate the trial start cue; it was simply
shown for a fixed duration (typically 1 s). After the trial start period, the trial start
cue disappeared, and a fractal visual conditioned stimulus (CS, 2° radius) appeared
on the screen for a fixed duration (2.5 s). The CS was randomly positioned at one of
three locations: the center of the screen, the left side of the screen, or the right side
of the screen (at 10° or 12.5° eccentricity). In some sessions, only the left and right
locations were used. Animals were not required to gaze at or interact with the CS in
any way. At the end of the CS period, the CS disappeared, and simultaneously the
trial’s outcome was delivered. Finally, there was an intertrial interval during which
the screen was blank (typically randomized between 1–8 s, with different durations
for different animals and tasks). In some sessions, a small fraction of intertrial
intervals included the unexpected presentation of salient events, which could be
appetitive (juice), aversive (an airpuff, ~35 psi, delivered through a narrow tube
placed ~6–8 cm from the face22), or audiovisual (an auditory tone sounding and
the screen flashing white).

The standard uncertainty tasks primarily differed in their CSs, outcomes, and
block structure:

Task A:21,22 Trials were presented in two distinct blocks. In the Probability
block, there were five CSs associated with 0, 25, 50, 75, and 100% probabilities
of 0.25 mL of juice. In the Amount block, there were five CSs associated with
100% probability of 0, 0.0625, 0.125, 0.1875, and 0.25 mL of juice. Hence for
each CS in the Probability block, there was a matched CS in the Amount block
that was associated with an identical mean amount of juice, but for which the

outcome was certain rather than probabilistic. Each block consisted of 20 trials
(four presentations of each of its five CSs, shuffled in a randomized order). The
two blocks were presented repeatedly in an alternating manner, with each block
continuing until its 20 trials were correctly completed and then immediately
transitioning into the other block.
Task B:21,23 Same as task A, except it used three Probability CSs (0, 50, 100%)
and the three corresponding Amount CSs (0, 0.125, 0.25 mL), and each block
consisted of six or nine trials (two or three presentations of each of its three
CSs). In some sessions, blocks also included interleaved choice trials, in which
two CSs were presented and animals were allowed to choose between them with
a saccade; our analysis here is of non-choice trials.
Task C:21,22 Trials were presented in two distinct blocks. In the Appetitive
block, there were three CSs associated with 0, 50, and 100% probabilities of 0.4
mL of juice. In the Aversive block, there were three CSs associated with 0, 50,
and 100% probabilities of airpuffs. Each block consisted of 12 trials (four
presentations of each of its three CSs).
Task D:22 There were nine CSs. Four CSs were associated with 25, 50, 75, and
100% probabilities of 0.4 mL of juice. Four other CSs were associated with 25,
50, 75, and 100% probabilities of airpuff. One final CS was associated with no
outcome (i.e., 0% probability of both reward and airpuff). The CSs were
presented in a pseudorandom order.
Task E: Three CSs were associated with 0, 50, and 100% probabilities of 0.25 mL
of juice. The CSs were presented in a pseudorandom order.

The information tasks follow the design in Fig. 2a or are variants of this
procedure. The task began with the appearance of a small circular trial start cue at
the center of the screen, in which animals were required to fixate for a fixed
duration (typically 0.5 or 1 s). The trial start cue then disappeared and was followed
in succession by a CS (2° radius) that was displayed for a fixed duration (typically
1 s), which was then replaced by a cue of the same width and height at the same
location that was displayed for a fixed duration (typically 2 s). The cue then
disappeared, and simultaneously the outcome was delivered. The trial then
completed with a 1 s intertrial interval. The CSs were presented randomly on either
the left or right side of the screen (10°). The CSs came in two types. The Info CSs
predicted juice reward (typically 0.25 mL) with different probabilities (e.g., 0, 50,
and 100%), and were followed by one of two informative cues whose color or
texture indicated the trial’s outcome. The Noinfo CSs also yielded juice reward with
matched size and probability, but were followed by one of two noninformative cues
whose colors or textures were randomized on each trial and hence did not convey
any information about the trial’s outcome. In some sessions, Noinfo CSs were
followed by a single noninformative visual cue; there was no apparent difference in
behavior or neural activity between sessions with one or two noninformative cues
and hence their data was pooled. The CSs were presented in a
pseudorandom order.

We collected data using the following information tasks:

Task IA: the task shown in Fig. 2a, used to record the majority of neurons.
There are three Info CSs and three Noinfo CSs, respectively associated with 0,
50, and 100% probability of reward.
Task IB: the gaze-contingent information task, shown in Fig. 7a. This followed
the same general procedure as task IA, but with a few modifications. The trial
start cue remained visible for a fixed duration after CS onset during which
animals were required to maintain fixation on the trial start cue (typically for 1 s
in animal B, 0.25 s in animal R, and 0.5 or 1 s in animal Z). Fixation breaks were
treated as errors: the screen went blank, there was a 1–2 s penalty delay period,
and then the trial repeated from the beginning. After the fixation period, the
trial start cue disappeared, and animals were free to move their eyes. The task
then detected the first moment when animals gazed at the CS, defined as the eye
position entering a square window centered on the CS (i.e., when horizontal
and vertical eye positions were within 4° of the center of the CS). If animals
gazed at an Info CS, it was immediately replaced with the appropriate
informative cue; if they gazed at a Noinfo CS, it was immediately replaced with
a noninformative cue; if they did not gaze at a CS, no cue was shown.
Importantly, regardless of their gaze behavior, all stimuli disappeared and the
outcome was delivered at the same, fixed time after CS onset on all trials in the
session (typically 3 s). Thus, gazing at the CS gave animals access to the cues,
but did not give them earlier access to the juice reward. In the version of this
task used for neuronal recording, we used the same visual CSs as in Task IA.
Tasks IA and IB were typically pseudo-randomly interleaved in a trial-by-trial
manner. At the start of each trial, the current task was indicated to the animal
by the color of the fixation point (white for IA, green for IB). In the version of
this task used for inactivation experiments and controls, there were only two
CSs —an Info CS and a Noinfo CS—that were both associated with 50%
probability of 0.25 mL of juice reward. This was to minimize the possibility that
gaze behavior to the CSs could be influenced by different reward expectations or
reward-prediction errors induced by CS onset, by ensuring that that the
probability, amount, and timing of juice reward was identical for all CSs on all
trials.
Task IC: used to record a subset of neurons in animal B. Similar to task IA but
instead of three types of CSs (0, 50, and 100% probability of reward) there were
ten types of CSs, which were respectively associated with 25, 50, 75, or 100%
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probabilities of reward, with the equivalent probabilities of punishment, with no
outcome (i.e., 0% probability of either reward or punishment), or with 50%
probability of either reward or punishment. Info and Noinfo trials were
presented in separate blocks. There were also minor changes in task timing and
visual stimuli: the CS and cue periods were 1 s and 2.25 s duration, cues were
presented as colored rectangles inside or around the CS rather than as squares
replacing the CS, and the CSs remained onscreen during the first 1.5 s of the cue
period.
Task ID: used to record a subset of neurons in animal R. Similar to task IA, but
with only three total CSs: Info 50% chance of 0.38 mL reward, Noinfo 50%
chance of 0.38 mL reward, and a Certain CS which yielded a 100% chance of
0.19 mL reward. For this task, uncertainty signals were defined on Info trials as
the ROC area comparing Info 50% CS trials to Certain CS trials, and on Noinfo
trials as the ROC area comparing Noinfo 50% CS trials to Certain CS trials.
There were also minor changes in task timing and visual stimuli: the CS and cue
periods were 1.5 s and 1.5 s in duration, each individual CS was associated with
two distinct cues, and the cues were square-shaped fractal stimuli rather than
colored rectangles.

Information-related neural activity was typically similar in the standard and
gaze-contingent versions of the information task (IA and IB), e.g., activity ramping
up to the time the informative cue would become available and to the time a
noninformed outcome would be delivered. Note, however, that the task design of
the gaze-contingent task potentially induced a link between gaze and receipt of
information: gaze behavior was not completely “free” because it was required if the
animal wanted to produce the cue, and the cue appeared with variable timing
depending on the animal’s behavior. Therefore, to be conservative, data from the
gaze-contingent task was excluded from all of our analysis of neural-behavioral
links (Figs 5–6), and was only used for a subset of other analyses. First, we analyzed
the data from tasks IA and IB separately to compare them to each other in our
supplementary analysis, testing whether information signals are altered when
access to information is explicitly contingent on gaze. Second, a neuron’s
uncertainty coding in the time window 0.5 s before outcome delivery was calculated
by pooling data from tasks IA and IB, because by that time in the trial the task was
no longer gaze-contingent because animals had already revealed the cue on the
great majority of trials. All remaining analyses, including our main analysis of
information signals (Figs. 2–3), were restricted to the data from task IA, except for
a small number of neurons for which the data from task IA was not available
because they were only recorded in task IB (n= 4 ACC neurons in monkey Z).

Analysis of neural activity in Fig. 1 and Supplementary S1 uses the data from all
neurons recorded using standard uncertainty tasks in which CSs were associated
with all five reward probabilities (tasks A and D). Analysis of neural activity during
information tasks (Figs. 2, 3) uses the data from neurons recorded using an
information task. Analyses of neural activity related to gaze behavior (Figs. 5, 6)
pooled the data from all neurons recorded in all tasks that contained trials of the
types specified in the analyses (e.g., Fig. 5a used neurons with the data from 0, 50,
and 100% conditions on both Info and Noinfo trials), except for the four ACC
neurons described above from animal Z recorded only in the gaze-contingent
information task, and six Pal neurons from animal W recorded in task A for which
the gaze measurements were excessively noisy due to an error in configuring the
eye tracker. If a neuron was recorded in multiple tasks, its data were fitted
separately for each task and then pooled over tasks. Specifically, for each neuron,
the model’s total log likelihood was calculated as the sum of the log likelihoods
from the individual tasks, and the neuron’s gaze-aligned activity (e.g., Fig. 5), fitted
gaze-related gain change and fitted time course of gaze-modulation and latency of
gaze-modulation (e.g., Fig. 6) were calculated for each task and then averaged
over tasks.

Muscimol injections. On muscimol injection sessions, a 33-gauge cannula was
inserted through a 23-gauge guide tube into a grid hole and to a depth previously
identified to be in icbDS or Pal and to contain information-related neurons (see
Supplementary Fig. 2 and Supplementary Table 2 for coordinates of all injection
sites). The other end of the cannula was connected to a 10 -µL Hamilton syringe.
Behavioral data from the gaze-contingent information task were collected in blocks
of 70–150 correct trials. Before the injection, we collected a “pre-injection” beha-
vioral data set from the animal performing the task, typically for one block
(median: 96 correct trials, standard deviation: 24, range: 48–164). After recording
the baseline data, we used a manual syringe pump (Stoelting) or automated syringe
pump (Harvard Apparatus) to inject muscimol dissolved in saline. Muscimol
concentrations were 8 mg/mL, injection rates were typically 0.1 µL/min (range:
0.09–0.2), and injection volumes are reported for each session in Supplementary
Table 2. After each injection, we collected a “post-injection” behavioral data set
(median: 303 correct trials, standard deviation: 157, range: 43–839). All pre- and
post-injection blocks of the data were included in our analysis regardless of the
animal’s response times or other gaze behavior, as long as the animal remained
engaged in the task (i.e., generally initiating trials quickly and performing them
correctly). On two sessions, pre-injection data from the same day were not avail-
able, so to obtain a comparable baseline we used the first block of behavioral data
collected from the same animal on days immediately before or after the session. On
saline injection control sessions, the same procedure was followed, except that only
the saline vehicle was injected (with the same volumes previously used for

muscimol injections). On sham control sessions, the same procedure was followed
to mimic the procedure for injection experiments in every detail, except that no
cannula was inserted and no injection was made. Specifically, we (1) set up the
injection equipment above the animal, (2) mounted the microdrive, (3) closed the
experimental booth and waited for the standard period of time that would be
required to use the microdrive to advance the tip of the cannula to the target area,
(4) started the behavioral task and ran it for the same duration and schedule as the
“before” condition on injection days, (5) stopped the task, entered the booth, and
turned on the motor of the injection device to mimic the sounds and duration of
time spent performing an injection, (6) turned on the task again and ran it for the
same duration and schedule as the “after” condition on injection days. The only
difference was that in injection experiments, the cannula was loaded into the
microdrive and advanced to the target area, while in sham experiments it was not.
Thus, sham sessions act as a control for the possibility that the observed alterna-
tions in information seeking were due to a generalized effect of the experimental
procedure.

Data analysis. All statistical tests were two-tailed unless otherwise noted. Neurons
recorded in the standard uncertainty tasks were included in our data set if they
showed significant responsiveness to uncertainty (activity on uncertain reward CS
trials significantly different from both 0% reward CS trials and 100% reward CS
trials, rank-sum tests, both p < 0.05 and both differences with the same sign). For
this purpose, activity was measured in a broad time window encompassing the CS
period in order to avoid making any assumptions about the time course of neural
responses (0.1–2.5 s after CS onset). The neuron’s sign of uncertainty coding was
defined as+ 1 if its ROC area for discriminating between uncertain reward CS
trials vs. the pooled data from 0 and 100% reward CS trials was > 0.5, and defined
as −1 if its ROC area was < 0.5. Similarly, for the information task, to avoid making
any assumptions about the nature of Info-, CS-, or cue-related activity, neurons
were included in our data set if their firing rates in a time window 0.5 s before
outcome delivery significantly discriminated between Noinfo certain vs. uncertain
reward trials (ROC area ≠ 0.5, p < 0.05, rank-sum test), and its sign of uncertainty
coding was set based on this activity in the analogous manner.

Neural activity was converted to normalized activity as follows. Each neuron’s
spiking activity was smoothed with a causal exponential kernel (mean= 30 ms)
and then z-scored and sign-normalized using the following procedure. The
neuron’s average activity time course aligned at CS onset was calculated for each
condition (defined here as each combination of CS and cue). These average activity
time courses from the different conditions were all concatenated into a single
vector, and its mean and standard deviation were calculated. Henceforth, all future
analyses converted that neuron’s firing rates to normalized activity by (1)
subtracting the mean of that vector, (2) dividing by the standard deviation of that
vector, (3) multiplying by the neuron’s sign of uncertainty coding. Thus,
normalized activity of+ 1 in a given task condition means that the neuron’s firing
rate deviated away from its average firing rate in the same direction that it
responded to uncertainty, by an amount equivalent to 1 SD of its overall
distribution of average firing rates during the task.

Neural uncertainty signals were calculated in specific time windows (e.g., pre-
cue, pre-outcome, etc.), as the ROC area for distinguishing activity on uncertain
reward CS trials (25, 50, and 75%) from pooled data from 0 and 100% certain
reward trials. In the information tasks, uncertainty signals were calculated
separately for Info and Noinfo trials. To visualize their time courses, they were
calculated on neural activity at millisecond resolution after activity was smoothed
with a gaussian kernel (SD= 50 ms) and sign-normalized based on the neuron’s
sign of uncertainty coding on Noinfo trials in a 0.5 s pre-outcome window (Fig. 3).
The Informative Cue Anticipation Index was defined as the difference between its
uncertainty signal for Info and Noinfo trials in a 0.5 s pre-cue time window (or for
Fig. 3a, visualized by calculating it separately at each time point). Hence the index
was positive if a neuron had a higher uncertainty signal in anticipation of Info CSs,
and negative if a neuron had a higher uncertainty signal in anticipation of Noinfo
CSs. The Uncertain Outcome Anticipation Index was defined as the difference
between its uncertainty signals computed on two different time windows on
Noinfo trials: a 0.5 s pre-outcome window, and a 0.5 s post-cue window
(0.15–0.65 s after cue onset). Hence the index was positive if a neuron’s
uncertainty signal grew more positive between the cue and outcome, and negative
if it grew more negative between the cue and outcome. Neurons were classified as
information-responsive if their Informative Cue Anticipation Index was
significantly different from 0 (p < 0.05, permutation tests conducted by comparing
the index calculated on the true data to the distribution of indexes calculated on
20,000 permuted data sets which shuffled the assignment of trials to Info and
Noinfo conditions). Neurons were classified as having a significant Uncertain
Outcome Anticipation Index using the analogous permutation test (p < 0.05,
shuffling the assignment of the data to the post-cue and pre-outcome time
windows). For analysis of information-oriented gaze behavior, the same two
indexes were calculated for each neuron except that instead of using neural data
they used the behavioral gaze data from the last millisecond in each time window
(equal to 1 for milliseconds when the animal’s gaze was classified as being in the
stimulus window and 0 otherwise). Finally, to plot the time course of uncertainty
signals from the population including neurons with different signs of uncertainty
coding, the normalized uncertainty signal (Fig. 3c) was calculated for each neuron
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using the equation:

UN ¼ 0:5þ U � 0:5ð ÞS; ð1Þ
…where UN is the normalized uncertainty signal, U is the uncertainty signal,

and S is the neuron’s sign of uncertainty coding (−1 or+ 1). Thus, neurons with a
positive sign of uncertainty coding (e.g., excited by uncertainty) had their
uncertainty signals left intact, while neurons with a negative sign of uncertainty
coding (e.g., inhibited by uncertainty) had their uncertainty signals flipped. This
ensured that each neuron had a positive normalized uncertainty signal in the time
window and task condition that was used to classify its sign of uncertainty coding.

Analysis of latency of uncertainty coding. In standard uncertainty tasks, each
neuron’s smoothed normalized activity aligned at CS onset was further smoothed
with a 101 ms causal boxcar kernel and then tested at each millisecond starting 50
ms after CS onset for whether it met the following criteria: (1) highly significant
ROC area for distinguishing pooled data from uncertain reward CSs from the
certain 0% reward CS (p < 0.005), (2) highly significant ROC area for distin-
guishing pooled data from uncertain reward CSs from the certain 100% reward CS
(p < 0.005); (3) both ROC areas have the same “sign” (i.e., both > 0.5 indicating
activation by uncertainty or < 0.5 indicating inhibition by uncertainty). A neuron’s
uncertainty coding latency was defined as the first millisecond after which it met
these criteria for at least 24 consecutive milliseconds. In the information tasks,
latencies were calculated in this manner separately for Info trials and Noinfo trials,
and the neuron’s overall latency was set to be the shorter of the two. In information
task ID, the first criterion was not applied because there was no task condition with
a 0% chance of reward. See Supplementary Fig 1 for the latencies and full ROC
time courses in all neurons with detected latencies. This method was chosen to
produce latencies that resemble those seen in raw traces of neural activity, but the
same key result (i.e., Pal having shorter latency than ACC and icbDS) was found
with other latency detection methods (e.g., different smoothing methods, sig-
nificance criteria, required number of consecutive time bins, etc). Each area’s
latency was defined as the shortest latency of its single neurons after excluding the
shortest 1% of single-neuron latencies (rounding up) to make the analysis robust to
a small number of false positives. Area latencies were compared by testing whether
the difference between their latencies was significantly different from that expected
by chance (p < 0.05, permutation test, conducted by comparing the latency dif-
ference calculated on the true data to the distribution of latency differences cal-
culated on 20000 permuted data sets which shuffled the assignment of neurons
between the two areas being compared).

Analysis of rough vs. graded uncertainty coding. In standard uncertainty tasks,
a neuron’s rough uncertainty activity was calculated as the difference in normalized
activity between the pooled data from all uncertain reward CSs and pooled data
from the certain 0 and 100% reward CSs. Its graded uncertainty activity was
calculated as the difference in normalized activity between data from the uncertain
50% reward CS and pooled data from the uncertain 25 and 75% reward CSs.
Neurons were classified as having significant graded uncertainty coding if their
graded uncertainty activity was significantly different from 0 (p < 0.05, rank-sum
test). Areas were classified as having graded uncertainty coding if the number of
neurons with significant graded coding was significantly different from chance
levels (p < 0.05, binomial test).

Analysis relating neural activity to gaze state. Gaze was defined as being on the
stimulus if it was within a small circular window (3° radius) centered on the trial’s
CS location. We observed that there was modest but noticeable variance in eye
tracker calibration from session to session. For instance, in some sessions the
measured gaze location was consistently slightly to the left of the CS at all CS
locations, while in other sessions it was slightly to the right. To correct for this, for
each neuron and for each CS location, we centered the gaze window on the peak of
a smoothed 2D histogram of eye positions collected from all milliseconds when the
eye was within an 8° radius of the theoretical center of the CS (using gaze data from
all trials that presented a reward-associated CSs and all times from 0.2 s after CS
onset to 0.1 s after CS offset). This produced a good match between the gaze
window used for analysis and the typical gaze positions around each CS location.

In our first analysis, we tested whether neural activity in each condition (defined
as each combination of CS and cue) was altered depending on whether the gaze
was on the CS, in a 0.5 -s time window immediately before the animal was going to
be informed of the outcome. For the standard uncertainty tasks, this was a pre-
outcome window. For the information tasks, this was a pre-cue window on Info
trials, and a pre-outcome window on Noinfo trials; the results were calculated
separately for these two windows and then averaged. For each neuron and each
condition, we did the following procedure. We calculated the neuron’s mean
normalized activity in the time window at one millisecond resolution, separately for
each gaze state (on or off). We then found all time points at which there was valid
data for both gaze states (i.e., milliseconds where there was at least one trial with
gaze on and one trial with gaze off). We then calculated the mean normalized
activity for each time point separately for the “gaze on” and “gaze off” states, and
then averaged across time points. This resulted in two measurements for each
condition: the neuron’s average activity when gaze was on the CS, and its average
activity at the same time points when the gaze was off the CS. This analysis was

performed on all neurons where there was trial-to-trial variance in gaze behavior
before receipt of information (i.e., at least one millisecond in the time window in
which there was at least one trial with gaze on and one trial with gaze off) for all of
the CSs. We then tested whether the mean difference in activity between the two
gaze states was significantly different from 0 across the neural population (p < 0.05,
signed-rank test). Note that this analysis essentially asks how neural activity differs
across behavioral gaze states. We could have done an equivalent analysis in terms
of the reverse relationship, by asking how well gaze states can be predicted from
neural activity (e.g., in terms of decoding accuracy). However, our hypothesis was
not that these neural populations have a 1:1 relationship with gaze states. Our
hypothesis was that neural activity is linked to the level of motivation to seek
information, which is one of many factors that compete to influence gaze (other
motivational, attentional, perceptual, and motor factors include: expectation of
juice reward, general arousal, task engagement, time since visual stimulus onset,
perceived stimulus intensity, recent history of saccades, etc.). Therefore, we found it
more interpretable to express the neural-behavioral link in terms of modulations of
neural activity.

Analysis relating neural activity to gaze shifts. We measured the time course of
the change in neural activity aligned at the time of gaze shifts. We detected all gaze
shifts onto or away from the CS/cue stimulus using the following procedure. Gaze
shifts off of the stimulus were defined as milliseconds where (1) the gaze started in
a stable “on” state, by being “on” for at least 150 consecutive ms, (2) starting at the
current millisecond, the gaze transitioned to a stable “off ” state, by being “off ” for
at least 100 consecutive ms, (3) the gaze was not merely hovering near the edge of
the stimulus, indicated by the gaze 100 ms after the putative shift being at a location
at least 5° away from the center of the stimulus, (4) the putative gaze shift was not
influenced by changes in the eye tracker signal related to blinks, indicated by blinks
not occurring in a 100 ms time window before the putative gaze shift. The results
were not sensitive to the detailed settings of these parameters; similar results were
obtained with other parameters. Gaze shifts onto the stimulus were defined in the
analogous manner, except that to make our analysis of pre-shift activity more
conservative we subtracted 40 ms from the gaze shift time, so that the gaze shift
time more closely approximated the time when the eye movement began rather
than the time when the eye entered the gaze window (Fig. 5c, note that time= 0 is
approximately when the gaze distance to the stimulus begins to change, rather than
when the eye enters the gaze window).

In order to compare neural activity around the time of gaze shifts to neural
activity in similar conditions where no gaze shift occurred, we matched each gaze
shift with a set of control non-shift events. Gaze shifts were only included in the
analysis if at least one control non-shift event was found. For each gaze shift, its
control non-shift events were defined as all time points in the data that met the
following criteria: (1) were recorded from the same neuron, (2) were on trials that
presented the same CS, (3) were on trials that presented the same type of cue, if it
was a task that used cues, (4) were at the same time point in the trial as the gaze
shift, (5) had spent the previous 150 consecutive ms in the same initial gaze state as
the gaze shift, (6) instead of shifting, the gaze continued to stay in that same gaze
state for at least 100 consecutive ms. We then selected a subset of these non-shift
events to use as controls in our analysis, in order to match the mean the gaze-to-
stimulus distance before the non-shifts as closely as possible to the gaze-to-stimulus
distance before the gaze shift. To do this, we calculated the difference between the
gaze-to-stimulus distance 50 ms before each non-shift event vs. 50 ms before the
gaze shift. We then selected non-shift events with a procedure that yielded
differences that were small and centered around zero. Specifically, we first selected
the non-shift event that had the smallest difference. We then iteratively added non-
shift events by repeatedly selecting the event whose difference met the following
criteria: (A) had the opposite sign of the mean difference of the currently selected
non-shift events, and (B) had the smallest magnitude of all remaining non-shift
events meeting that criterion. For instance, if the first selected non-shift event
occurred when gaze was slightly further away from the stimulus than before the
gaze shift, the second selected non-shift event would occur when the gaze was
slightly closer to the stimulus than before the gaze shift. If no remaining non-shift
events met those criteria, no further non-shift events were selected. This procedure
yielded 36306 gaze shifts, with a mean of 3.5 control non-shift events per gaze shift
(standard deviation: 3.0, range: 1–31). There was a close match between the mean
time course of the gaze-to-stimulus distances before gaze shifts vs. before the
control non-shift events (Fig. 5c).

Each neuron’s activity related to each of its individual gaze shifts was quantified
as its normalized activity aligned on the gaze shift minus its mean normalized
activity aligned on that gaze shift’s associated control non-shift events. The
neuron’s overall activity related to gaze shifts was quantified by averaging its
activity for all individual gaze shifts, separately for each type of gaze shift and each
condition being analyzed (e.g., Fig. 5d had two types of gaze shifts: on and off; and
three conditions: gaze shifts when the trial’s reward outcome was uncertain, known
to be reward, or known to be no reward). Neurons were only included in an
analysis if they had at least one gaze shift of each type in each of the conditions
being compared (e.g., Fig. 5d only includes neurons that had at least one gaze shift
in each of the 2 × 3= 6 combinations of gaze shift type and condition). Activity
around the time of the gaze shift was quantified in three time windows relative to
the gaze shift: before the gaze shift (−0.4 to −0.1 s), during the gaze shift (−0.1 to
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+ 0.1 s), and after the gaze shift (+ 0.1 to+ 0.4 s). The first two time windows
contain activity that cannot be explained as a result of visual feedback following the
gaze shift, as the uncertainty-related neurons in these areas almost exclusively had
visual response latencies > 0.1 s (e.g., Fig. 1).

Model of gaze-modulation. Each neuron’s activity during the CS and cue periods
in each task was fit with a computational model. The model’s parameters were
divided into three groups (see Supplementary Fig. 8 for further explanation and
illustrations). First, β parameters specifying the neuron’s responses to CSs and cues:
its time course of activity in each task condition during moments when gaze is off
the stimulus. This is similar to a traditional PSTH, and represents the time course
that neural activity would have if there was no gaze-modulation. Second, μ and σ
parameters specifying the time course of gaze-modulation: what times activity
should be modulated relative to a gaze shift onto the stimulus, and how strongly
gaze should be modulated at those times. Third, wgain and woffset parameters spe-
cifying the effect of gaze-modulation: whether gaze induces a multiplicative change
in response strength (gain change), an additive increase in firing rate (offset), or
both. Importantly, we validated the model by confirming that it accurately
recovered the true gaze-modulation parameters when it was fitted to simulated data
sets, including simulations where (A) gaze-modulation effects were similar to those
in the real data, (B) gaze-modulations had the same time course as the real data but
a variety of different magnitudes, (C) gaze-modulations had the same magnitudes
as the real data but a variety of different time courses, (D) “null hypothesis”
simulations in which gaze-modulations were absent (Supplementary Fig. 8).

The model was defined as follows. The β parameters specified the mean firing
rate when gaze was off the stimulus location. A separate parameter, β(c,t), was
defined for each trial condition c and each time bin t during the trial. Thus, similar
to a conventional set of PSTHs, they specified the full time course of the neural
response to each stimulus. Trial conditions were defined as combinations of CSs
and cues. For instance, in the information task shown in Fig. 2 there were seven
conditions (Info 100% CS with reward cue, Info 50% CS with reward cue, Info 50%
CS with no-reward cue, Info 0% CS with no-reward cue, Noinfo 100% CS with
noninformative cue, Noinfo 50% CS with noninformative cue, Noinfo 0% CS with
noninformative cue). Time bins were defined as 50 ms bins spanning from 0.2 s
after CS onset to 0.1 s after outcome delivery onset. Thus, a neuron recorded with a
3 s total duration from CS onset to outcome delivery was fit with seven
conditions × 58 time bins= 406 distinct β parameters.

The μ and σ parameters specified the time course of gaze-modulation
(Supplementary Fig. 8). Specifically, at each millisecond of each trial, a GazeMod
variable specified the degree to which neural activity was modulated by gaze (0 <=
GazeMod <= 1, 0= no modulation, 1=maximal modulation). GazeMod was
computed by convolving a binary Gaze variable (1= gaze is on the stimulus, 0=
gaze is off the stimulus) with a Gaussian kernel with mean= μ and standard
deviation= σ. Thus, μ controlled the temporal offset between neural activity and
gaze (whether neural activity is modulated before the gaze shifts onto the stimulus,
or vice versa) and σ controlled the gradualness of gaze-modulation around a gaze
shift (low σ= rapid onset of gaze-modulation, high σ= gradual onset). Thus, the
time course of gaze-modulation around the time of a gaze shift took the form of a
cumulative Gaussian function (Supplementary Fig. 8). The model’s gaze-
modulation latency was calculated as the time relative to gaze onset when its time
course of gaze-modulation reached 10% of its maximal value (i.e., when GazeMod
= 0.1); other criteria produced the same main result (i.e., ACC before icbDS
and Pal).

The wgain and woffset parameters specified the effect of gaze-modulation
(Supplementary Fig. 8). Specifically, wgain caused gaze to multiplicatively scale
firing rates, while woffset caused gaze to add or subtract from firing rates. Putting the
parameters together, the neural firing rate in time bin t of trial tr that was in
condition c was modeled as:

Rate tr; tð Þ ¼ β c; tð Þ ´ 1þ GazeMod tr; tð Þ ´wgain

� �
þ GazeMod tr; tð Þ ´woffset þ ε

ð2Þ
…where GazeMod(tr,t) is the mean GazeMod on trial tr in time bin t, and ε is a

normally distributed noise term. Thus, if wgain= woffset= 0 then there was no gaze-
modulation. If one of these parameters was nonzero, then gaze had a strictly
multiplicative or additive effect on firing rate. Finally, if both parameters were
nonzero, then the model multiplicatively increased the gain of neural responses
relative to a baseline firing rate (e.g., during gaze, excitations above baseline are
stronger excitations, and inhibitions below baseline are stronger inhibitions;
Supplementary Fig. 8).

The model was fitted using the method of maximum likelihood, i.e., finding the
parameters that maximize the probability that the model would produce the
observed data. We did this by deriving the log likelihood function, its gradient, and
its Hessian, and using them as input to the Trust Region Reflective Algorithm for
function optimization to find the parameters that locally maximized the log
likelihood (using its implementation in the fmincon function in Matlab). The
parameters were constrained so that μ was in [−1,+ 1] and σ was in [0,1]; the
other parameters were unconstrained. The initial parameter settings were β= 0, μ
= 0, σ= 0.1, wgain= 0, woffset= 0; different initial parameter settings gave similar
results. The optimization algorithm was allowed to continue for each session (here,
defined as each set of data collected from a particular neuron with a particular task)

for up to 100 function evaluations. The optimization algorithm successfully
converged on 459/460 (99.8%) of sessions.

A neuron was considered to be significantly modulated by gaze if the log
likelihood of the gaze model was significantly higher than expected by chance
under the null hypothesis that there was no relationship between neural activity
and gaze (p < 0.05, permutation test with 200 permutations). This was tested by
comparing the log likelihood of the model fitted to the neuron’s true data to the
distribution of log likelihoods of the model fitted to shuffled data sets in which the
neural data was exactly the same as the original data set, but the gaze data were
randomly shuffled among trials that shared the same task condition. For instance,
suppose the 75% reward CS was presented on trials 5, 12, 14, 22, and 24. The
neural data on those trials would be kept the same, but the gaze data would be
shuffled so that the gaze data from trial 5 might now be assigned to trial 22; the
gaze data from trial 12 might now be assigned to trial 14; etc. Thus, shuffling
destroyed any trial-to-trial relationships between neural activity and gaze, while
leaving the neural and gaze data individually intact. The neuron was classified as
significantly gaze-modulated if the log likelihood of the model fit to the true data
set was greater than the log likelihoods of the model fits to at least 191/200 of the
permuted data sets. Note that this is a one-tailed test, because the shuffling cannot
(in expectation) improve the quality of the fit. That is, if there was a true neural-
gaze relationship in the original data then shuffling should worsen the fit, while if
there was no such relationship then shuffling should not affect the quality of the fit;
in neither case could shuffling improve the fit.

The latency of gaze-modulation was compared across areas using two methods
which gave consistent results. First, we calculated each area’s mean time course of
gaze-modulation by averaging the fitted time courses for each neuron in that area
with significant gaze-modulation (Fig. 6f) and using this to calculate the area’s
latency in the same method used for single-neuron time courses. We then
calculated whether the per-area latencies were significantly different (p < 0.05,
permutation test conducted by comparing the difference between the area latencies
with the distribution of such differences computed from 2000 permuted data sets,
in which the assignment of neurons to the two areas was randomly shuffled).
Second, we directly compared the distribution of fitted latencies from all single
neurons with significant gaze-modulation in the two areas (Fig. 6f inset, rank-sum
test, p < 0.05).

Analysis of perturbation experiments. Response times (RTs) were computed
online and used to determine when the CS was replaced by the cue, defined as the
time between the go signal (i.e., the trial start cue’s disappearance) and the gaze
entering the response window around the CS. To improve the accuracy of RT
measurements for our offline analysis, RTs were recomputed offline using response
windows that were corrected for session-to-session variability in eye tracker set-
tings using the procedure described above (i.e., centering the window on the
observed peak gaze location separately for each CS location and each session). We
then analyzed the RTs from all correctly performed trials in which the animal made
a response and there was at least rough agreement between the online and offline
RTs (i.e., within 0.2 s of each other). These criteria were met by nearly all correctly
performed trials (n= 17968/18035; 99.6%). We then quantified the information-
seeking bias using an Infobias Index based on the mean RTs for the Info and
Noinfo CSs:

Infobias index ¼ Noinfo RT� Info RTð Þ= Noinfo RTþ Info RTð Þ; ð3Þ
…which was computed separately for each session, and separately for each of

the 2 × 2 combinations of time in session (pre- vs. post-injection) and CS location
relative to injection site (contralateral vs. ipsilateral). We then derived two
additional measures. For session and each CS location, we defined the change in
Infobias index as the difference between post-injection and pre-injection Infobias
indexes. We defined the change in Infobias laterality as the difference between the
changes in Infobias Index for the contralateral and ipsilateral sides.

To test whether icbDS and Pal inactivations affected information-seeking
behavior (Fig. 7c), we computed the mean change in Infobias index and tested
whether it was significantly different from zero (p < 0.05, permutation test
conducted by comparing the true mean change in Infobias Index to the distribution
of mean changes in Infobias Index computed on 20,000,000 permuted data sets, in
which pre- and post-injection data were shuffled with each other). For pooled data
from all inactivation sessions and for control sessions (Fig. 7c), we used the same
procedure, except to be conservative we included an additional correction for any
potential main effects of animal, by using weighted means such that each animal’s
inactivation and control data were weighted by the number of inactivation sessions
that animal contributed to the data set. The same key results were obtained in
uncorrected data (significant change in contralateral Infobias Index during
inactivation sessions, p= 0.0015, signed-rank test; no significant change in Control
sessions, p= 0.8786, signed-rank test; changes in inactivation sessions significantly
different from changes in control sessions, p= 0.0297, rank-sum test).

To test how inactivations interfered with information-seeking behavior, we
analyzed RTs separately for Info and Noinfo CSs. RTs were normalized by z-
scoring all RTs separately for each session and CS location. Then for each area and
each CS type, we tested whether there was a significant difference between the pre-
vs. post-injection RT distributions for contralateral CSs (p < 0.05, ranked-sum test).
We further tested if the changes in RTs were significantly different for the two CS

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13135-z ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5168 | https://doi.org/10.1038/s41467-019-13135-z | www.nature.com/naturecommunications 15

www.nature.com/naturecommunications
www.nature.com/naturecommunications


types (p < 0.05, interaction term from a two-way ANOVA using the factors CS type
(Info or Noinfo) and epoch in session (pre- or post-injection)). Finally, to directly
compare the effects of injections in the two areas, we first computed each area’s
overall change in mean normalized RT averaged across the Info and Noinfo CSs.
This was computed as follows:

ΔRTarea;overall ¼ 0:5 ´ RTarea;Info;after � RTarea;Info;before

� �
þ 0:5 ´ RTarea;Noinfo;after � RTarea;Noinfo;before

� �
;

ð4Þ
where RTarea,condition is the mean normalized RT from experiments with a given

area and in the specified condition (Info or Noinfo CS and before or after injection).
We tested whether ΔRTicbDS,overall was significantly different from ΔRTPal,overall

(permutation test, conducted by comparing the difference between the ΔRToverall of
the two areas and comparing it to the distribution of differences computed on 2000
permuted data sets in which each session’s pre- and post-injection data were
shuffled with each other). We then computed the component of this overall change
in RTs that occurred in the hypothesized manner, i.e., icbDS injection slowing RTs
to the Info CS or Pal injection speeding RTs to the Noinfo CS, as:

ΔRThypothesized ¼ RTicbDS;Info;after � RTicbDS;Info;before

� �
� RTPal;Noinfo;after � RTPal;Noinfo;before

� �
; ð5Þ

We also computed the component that occurred in the orthogonal manner to
our hypothesis, i.e., icbDS injection slowing RTs to the Noinfo CS or Pal injection
speeding RTs to the Info CS, as:

ΔRTorthogonal ¼ RTicbDS;Noinfo;after � RTicbDS;Noinfo;before

� �
� RTPal;Info;after � RTPal;Info;before

� �
; ð6Þ

We tested these components for significance using the same type of
permutation test (comparing them to the distribution of the components calculated
from 2000 permuted data sets in which each session’s pre- and post-injection data
were shuffled with each other).

To test how inactivations might be expected to interfere with information seeking
given the broad strokes of the cortico-BG circuit, we implemented a simple
computational model of the network and used it to generate a simulated RT for each
trial in our data set (Fig. 7e). We then analyzed the simulated RTs in the same manner
as the real RTs. Note that this model is intended as a simple test of whether
information-seeking behavior and its perturbation by icbDS and Pal inactivations are
consistent with a straightforward implementation of the typical cortico-BG
information signals we observed and the signs of excitatory/inhibitory connections
between areas. This model is not intended to emulate the detailed or
recurrent dynamics of neural activity within or between areas or to emulate the
detailed circuitry of visual processing and saccade generation. In this model, each
neural population in each hemisphere was represented by a single simulated neuron
whose firing rate r on each trial was:

rACC ¼ wACC þ I ´wI!ACC; ð7Þ

ricbDS ¼ wicbDS þ rACC ´wACC!icbDS; ð8Þ

rPal ¼ wPal þ ricbDS ´wicbDS!Pal; ð9Þ

rVisual ¼ wVisual þ S ´wS!Visual; ð10Þ

rGaze ¼ wGaze þ rVisual ´wVisual!Gaze þ rPal ´wPal!Gaze þ ε; ð11Þ
…where for each area X, the variable wX represents the area’s baseline firing rate

and wY→X represents the weight of incoming input from area Y to area X in the
same hemisphere, I represents the availability of information and is 1 for trials with
an Info CS and 0 for trials with a Noinfo CS, S represents the presence of a
contralateral visual stimulus, and is 1 for trials with a contralateral CS and 0 for
trials with an ipsilateral CS, and ε is Gaussian noise drawn independently on each
trial with mean= 0 and standard deviation= 30. Here, Visual represents a
population of neurons responsive to visual input for the purpose of directing eye
movements (e.g., visually responsive neurons in the frontal eye field, lateral
intraparietal sulcus, and/or the superior colliculus105–107), and Gaze represents a
population of neurons that directly control eye movements (e.g., saccade-related
neurons in the deep layers of superior colliculus105). Note that the connections in
this model are not meant to imply that effects are necessarily mediated in the brain
by direct monosynaptic connections; the connections correspond to the net effect
of both direct and indirect influences of activity in one area on another area. The
baseline and input weights of each cortico-BG area were selected to approximately
match the typical firing rates of information-related neurons in that area in the
moment before cue delivery in the information task, and to be consistent with the
excitatory/inhibitory nature of each connection in the cortico-BG network, as
follows. Baseline rates were: ACC= 2, icbDS= 0, Pal= 50, Visual= 0, Gaze= 0.
Input weights were: Info→ACC=+ 20, Stim→Visual=+ 100, ACC→ icBDS
=+ 1, icbDS→ Pal=−2, Visual→Gaze=+ 1, Pal→Gaze=−1. Finally, the
simulated RTs for each trial were generated by taking the firing rates from the Gaze
neuron in the contralateral hemisphere to the CS and mapping them onto the
distribution of RTs in the real data (so that the trial with the Kth highest firing rate
from the Gaze neuron was given the Kth fastest RT observed in control sessions in
the real data). These simulated RTs were then analyzed in the same manner as the
real data. Inactivations were simulated by multiplying the firing rate of the

inactivated area (icbDS or Pal) by a scaling factor of 0.7, representing a 30%
reduction in firing rate; other scaling factors produced qualitatively similar results
(i.e., icbDS inactivations predominantly slowing Info CS RTs and Pal inactivations
predominantly speeding Noinfo CS RTs).

Anatomy and tracer injections. Experiments were carried out on separate animals
from those used for electrophysiology. Some of these injections were analyzed for
other anatomical studies of the striatal-pallidal network (e.g., ref. 26,108). Proce-
dures were conducted in accordance with the Institute of Laboratory Animal
Resources Guide for the Care and Use of Laboratory Animals and approved by the
University Committee on Animal Resources at the University of Rochester. Adult
male macaque monkeys (data from 1 Macaca nemestrina, 2 Macaca fascicularis
shown here) were tranquilized by intramuscular injection of ketamine (10 mg/kg).
For a subset of animals, MRI (3 T) T1 or T2 turbo spin echo scans (0.5 × 0.5 ×
1.42 mm) were obtained before surgery. For the others, serial electrode penetrations
were made to locate the anterior commissure: neuronal activity was identified
based on patterns of electrophysiological activity of the striatum, both segments of
the pallidum, the ventral pallidum, and the underlying nucleus basalis, while the
absence of cellular activity was used to distinguish the anterior commissure from
the external pallidal segment dorsally and the subcommissural ventral pallidum
ventrally109. These images and recordings were used to calculate the anterior/
posterior, dorsal/ventral, and medial/lateral coordinates for each tracer injection
from stereotaxic zero. Animals received ketamine 10 mg/kg, diazepam 0.25 mg/kg,
and atropine 0.04 mg/kg IM in the cage. A surgical plane of anesthesia was
maintained by either intravenous injections of pentobarbital (for recordings, initial
dose 20 mg/kg, i.v., and maintained as needed) or via 1–3% isoflurane in 100%
oxygen via vaporizer. Temperature, heart rate, and respiration were monitored
throughout the surgery. Monkeys were placed in a Kopf stereotaxic, a midline scalp
incision was made, and the muscle and fascia were displaced laterally to expose the
skull. A craniotomy (~2–3 cm2) was made over the region of interest, and small
dural incisions were made only at injection sites. Monkeys received an injection of
one or more of the following anterograde/bidirectional tracers: lucifer yellow,
fluororuby, or fluorescein conjugated to dextran amine (LY, FR, or FS; 40–50 nl,
10% in 0.1 M phosphate buffer (PB), pH 7.4; Invitrogen); wheat germ agglutinin
conjugated to horseradish peroxidase (WGA; 40–50 nl, 4% in distilled water;
Sigma, St. Louis, MO); Phaseolus vulgaris-leucoagglutinin (PHA-L; 50 nl, 2.5%;
Vector Laboratories); or tritiated amino acids (AA, 100 nl, 1:1 solution of [3H]
leucine and [3H]-proline in dH2O, 200 mCi/ml, NEN). These tracers do not cross-
react with one another, and thus an individual animal can serve in multiple
experiments, reducing the total number of animals needed. Tracers were pressure-
injected over 10 min using a 0.5-μl Hamilton syringe. Following each injection, the
syringe remained in situ for 20–30 min. Twelve to 14 days after surgery, monkeys
were again deeply anesthetized and perfused with saline followed by a 4% paraf-
ormaldehyde/1.5% sucrose solution in 0.1 M PB, pH 7.4. Brains were postfixed
overnight, and cryoprotected in increasing gradients of sucrose (10, 20, and 30%).
Serial sections of 50 μm were cut on a freezing microtome into 0.1 M PB or
cryoprotectant solution110. One in eight sections was processed free-floating for
immunocytochemistry to visualize the tracers. Tissue was incubated in primary
anti-LY (1:3000 dilution; Invitrogen) or anti-FR (1:1000; Invitrogen in 10% NGS
and 0.3% Triton X-100 (Sigma- Aldrich) in PB for four nights at 4 °C. Following
extensive rinsing, the tissue was incubated for 40 min in biotinylated secondary
anti-rabbit antibody made in goat (1:200; Vector BA-1000) followed by incubation
with the avidin–biotin complex solution (Vectastain ABC kit, Vector Laboratories).
Immunoreactivity was visualized using standard DAB procedures. Staining was
intensified by incubating the tissue for 5–15 s in a solution of 0.05% 3,3′-diami-
nobenzidine tetra-hydrochloride, 0.025% cobalt chloride, 0.02% nickel ammonium
sulfate, and 0.01% H2O2. Sections were mounted onto gel-coated slides, dehy-
drated, defatted in xylene, and cover-slipped with Permount. Using darkfield light
microscopy, brain sections, injection sites, and dense pallidal terminal fields were
outlined under a 1.6, 4.0, or 10 × objective using a Leitz or Leica microscope with
Neurolucida software (MBF Bioscience). Terminal fields were considered dense
when they could be visualized at a low objective (1.6 × )110. Retrogradely labeled
input cells were identified under brightfield microscopy (×20). StereoInvestigator
software (Micro-BrightField) was used to stereologically count labeled cells with an
even sampling (64%). On the additional three cases (45LY, 113FS, 40LY), cells were
charted in representative select frontal sections using the same parameters. Other
sections were visually inspected for labeling.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data sets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Code availability
The custom code for model fitting is available from the corresponding author on
reasonable request.
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